Data Recorder
Akita simulations require recording and storing data. Therefore, the datarecording
package is created to provide a unified interface for recording data. The goal is to record all the data associated with one simulation in a single SQLite database file.
This document provides guidance on how to use the data recording feature of Akita.
Create Database and DataRecorder
To start recording data, we need to create a database and a data recorder. The following code snippet demonstrates how to create a database and a data recorder.
dataRecorder := datarecording.NewDataRecorder("example")
This will create a SQLite database file named "example.sqlite3" in the current directory.
You can also create a data recorder with an existing database connection:
db, err := sql.Open("sqlite3", "example.sqlite3")
if (err != nil) {
panic(err)
}
dataRecorder := datarecording.NewDataRecorderWithDB(db)
Creating a Table
Before recording data, we need to create a table in the database. Since we consider that each data entry in a table is a struct, creating a table only requires providing a sample entry, as in the following code snippet:
type Task struct {
ID int
Name string
Age int
}
dataRecorder.CreateTable("tasks", Task{})
All fields from the struct will be automatically stored in the database as columns.
Improving Query Performance with Struct Field Tags (Optional)
For large datasets, you can improve query performance by adding indexes to specific fields using struct tags. These tags are completely optional but can significantly speed up data retrieval.
Here's an example using struct field tags:
type Task struct {
ID int `akita_data:"unique"` // Create a unique index on ID field
Name string `akita_data:"index"` // Create a regular index on Name field
Age int `akita_data:"ignore"` // This field will not be stored
}
dataRecorder.CreateTable("tasks", Task{})
The following tags are supported:
akita_data:"unique"
: Creates a unique index on the field, which improves query performance when searching by this field and enforces uniquenessakita_data:"index"
: Creates a regular index on the field, which improves query performance for filters and sortingakita_data:"ignore"
: The field will not be stored in the database
Adding indexes can significantly improve performance when querying large datasets, but may slightly slow down data insertion.
Type Restrictions
Notice there are some restrictions for the input struct. Considering the potential complexity brought by composite objects in which fields refer to another object, we only allow primitive types to be written into the SQL database. The program will panic if the input struct contains any other types.
func (t *sqliteWriter) isAllowedType(kind reflect.Kind) bool {
switch kind {
case
reflect.Bool,
reflect.Int,
reflect.Int8,
reflect.Int16,
reflect.Int32,
reflect.Int64,
reflect.Uint,
reflect.Uint8,
reflect.Uint16,
reflect.Uint32,
reflect.Uint64,
reflect.Float32,
reflect.Float64,
reflect.Complex64,
reflect.Complex128,
reflect.String:
return true
default:
return false
}
}
Insert Data Entries
Data entries can be inserted as the simulation is running. The following code snippet demonstrates how to insert a data entry.
task := Task{ID: 1, Name: "Task 1", Age: 30}
dataRecorder.InsertData("tasks", task)
Note that the entry to be inserted must be of the same type as the sample entry provided when creating the table. Fields marked with akita_data:"ignore"
will not be stored in the database.
Flushing Data to Disk
Data entries are buffered in memory and written to disk when the buffer is full or when explicitly requested. The default buffer size is 100,000 entries. You can explicitly flush the data using:
dataRecorder.Flush()
The data recorder will also automatically flush all buffered data when the program exits.
Listing Tables
To get a list of all tables in the database:
tableNames := dataRecorder.ListTables()
for _, name := range tableNames {
fmt.Println("Table:", name)
}
Closing the Data Recorder
When you're done with the data recorder, you can close it:
dataRecorder.Close()
Reading from a Database
To read data from a previously created database, you can use the DataReader interface:
reader := datarecording.NewReader("example.sqlite3")
You can also create a reader with an existing database connection:
db, err := sql.Open("sqlite3", "example.sqlite3")
if err != nil {
panic(err)
}
reader := datarecording.NewReaderWithDB(db)
Mapping Tables
Before querying a table, you need to map it to a Go struct that matches the table structure:
reader.MapTable("tasks", Task{})
The struct definition must match the structure of your table. Fields that were marked with akita_data:"ignore"
when creating the table should still be included in your struct, but their values will not be populated.
Querying Data
For basic queries, you can use the Query method with empty QueryParams:
results, count, err := reader.Query("tasks", datarecording.QueryParams{})
if err != nil {
panic(err)
}
fmt.Printf("Found %d records out of %d total\n", len(results), count)
for _, result := range results {
task := result.(*Task)
fmt.Printf("ID: %d, Name: %s\n", task.ID, task.Name)
}
Advanced Queries
The QueryParams struct provides several options for filtering, sorting, and pagination:
results, _, err := reader.Query("tasks", datarecording.QueryParams{
Where: "ID > ? AND Name LIKE ?",
Args: []any{5, "Task%"},
OrderBy: "ID DESC",
Limit: 10,
Offset: 20,
})
The QueryParams struct has the following fields:
Where
: SQL WHERE clause without the "WHERE" keyword (e.g., "timestamp > ? AND category = ?")Args
: Arguments for the placeholders in the Where clauseLimit
: Maximum number of records to return (set to 0 for no limit)Offset
: Number of records to skip (for pagination)OrderBy
: Sorting criteria without the "ORDER BY" keywords (e.g., "timestamp DESC")
Listing Tables
To get a list of all mapped tables:
tableNames := reader.ListTables()
for _, name := range tableNames {
fmt.Println("Table:", name)
}
Closing the Reader
When you're done with the reader, you should close it:
reader.Close()
Complete Example
Here's a complete example of using the data recorder and reader:
package main
import (
"fmt"
"os"
"github.com/sarchlab/akita/v4/datarecording"
)
type Task struct {
ID int `akita_data:"unique"`
Name string `akita_data:"index"`
Age int `akita_data:"ignore"`
}
func main() {
dbPath := "test"
recorder := datarecording.NewDataRecorder(dbPath)
task1 := Task{1, "task1", 30}
recorder.CreateTable("test_table", task1)
task2 := Task{2, "task2", 15}
recorder.InsertData("test_table", task2)
recorder.Flush()
tables := recorder.ListTables()
fmt.Printf("Table: %s\n", tables[0])
recorder.Close()
reader := datarecording.NewReader(dbPath + ".sqlite3")
reader.MapTable("test_table", Task{})
// Simple query to get all records
results, count, err := reader.Query("test_table", datarecording.QueryParams{})
if err != nil {
panic(err)
}
fmt.Printf("Found %d records out of %d total\n", len(results), count)
for _, result := range results {
task := result.(*Task)
fmt.Printf("ID: %d, Name: %s\n", task.ID, task.Name)
}
// Advanced query with filtering and sorting
filteredResults, _, err := reader.Query("test_table", datarecording.QueryParams{
Where: "ID > ?",
Args: []any{1},
OrderBy: "Name ASC",
})
if err != nil {
panic(err)
}
fmt.Println("Filtered results:")
for _, result := range filteredResults {
task := result.(*Task)
fmt.Printf("ID: %d, Name: %s\n", task.ID, task.Name)
}
reader.Close()
os.Remove(dbPath + ".sqlite3")
}